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Abstract Compared with flatbed scanners, portable

smartphones provide more convenience for physical

document digitization. However, such digitized docu-

ments are often distorted due to uncontrolled physical

deformations, camera positions, and illumination vari-

ations. To this end, we present DocScanner, a novel

framework for document image rectification. Different

from existing solutions, DocScanner addresses this is-

sue by introducing a progressive learning mechanism.

Specifically, DocScanner maintains a single estimate

of the rectified image, which is progressively corrected

with a recurrent architecture. The iterative refinements

make DocScanner converge to a robust and superior

rectification performance, while the lightweight recur-

rent architecture ensures the running efficiency. To fur-

ther improve the rectification quality, based on the ge-
ometric priori between the distorted and the rectified
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images, a geometric regularization is introduced during

training to further improve the performance. Extensive

experiments are conducted on the Doc3D dataset and

the DocUNet Benchmark dataset, and the quantitative

and qualitative evaluation results verify the effective-

ness of DocScanner, which outperforms previous meth-

ods on OCR accuracy, image similarity, and our pro-

posed distortion metric by a considerable margin. Fur-

thermore, our DocScanner shows superior efficiency in

runtime latency and model size.

Keywords Document image rectification · Progressive
learning · Segmentation · OCR · Image similarity

1 Introduction

Document digitization refers to the creation of a digital

image backup of a document file, which is frequently

applied in many formal affairs. Thanks to the rapid

advances in portable cameras and smartphones, docu-

ment digitization becomes much more accessible than

before. However, such captured document images com-

monly suffer from various levels of distortions, due to

uncontrolled camera position, uneven illumination, and

various paper sheet deformations (i.e., folded, curved,

and crumpled). These distortions make the digital files

unqualified on many occasions. Besides, they also bring

difficulties to many downstream processings, such as

automatic text recognition (Yuan et al., 2022; Peng

et al., 2022), content understanding (Zhong et al., 2019;

Kim et al., 2022), and question answering (Mathew

et al., 2021), editing, and preservation. To address these

problems, document image rectification has been ac-

tively researched in recent years.

One direction of the early attempts to document

image rectification is developed based on the recon-
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struction of the 3D shape of the deformed pages. Those

methods heavily rely on auxiliary hardware (Brown and

Seales, 2001; Brown et al., 2007; Zhang et al., 2008;

Meng et al., 2014) or multiview shooting (Brown and

Seales, 2004; Yamashita et al., 2004; Koo et al., 2009;

You et al., 2018), limiting their further applications.

Some other methods (Lavialle et al., 2001; Wu and

Agam, 2002; Chew Lim Tan et al., 2006; He et al.,

2013) assume a parametric model on the curved pages

and optimize the model with specific attributes, such

as shading, boundaries, and textlines. Nevertheless, the

oversimplified parametric models of such approaches

usually lead to limited performance as well as non-

negligible computational costs for model optimization.

Recently, deep learning has been introduced to doc-

ument image rectification with promising performance

as well as a significant reduction in computational cost.

In deep learning based methods (Ma et al., 2018; Das

et al., 2019; Li et al., 2019; Liu et al., 2020; Xie et al.,

2020; Das et al., 2020; Markovitz et al., 2020; Das et al.,

2021; Feng et al., 2021; Xie et al., 2021; Feng et al.,

2022; Zhang et al., 2022; Jiang et al., 2022; Ma et al.,

2022), document image rectification is approached as

the regression of a dense 2D vector field (warping flow)

that samples the pixels from distorted images to rec-

tified ones. Typically, DocUNet (Ma et al., 2018) first

demonstrates the potential of deep learning for docu-

ment image rectification with a stacked U-Net (Ron-

neberger et al., 2015). Then, DewarpNet (Das et al.,

2019) models the 3D shape of a deformed document in

the network, while DocGeoNet (Feng et al., 2022) and

RDGR (Jiang et al., 2022) leverage the curved textlines

to guide the rectification. DocProj (Li et al., 2019) and

PWUNet (Das et al., 2021) consider distinct local defor-

mation fields and stitch them together to obtain an im-

proved restoration. Although they report superior per-

formance on the challenging benchmark dataset (Ma

et al., 2018), the rectified images remain unsolved dis-

tortions and these advanced solutions are still limited

by difficulties such as large sheet deformations and dis-

torted textlines. In contrast, we propose to conduct dis-

tortion rectification in a progressive manner, aiming to

obtain a robust and superior rectification result.

In this work, we introduce DocScanner, a novel

deep network framework for document image rectifi-

cation. Different from existing solutions, DocScanner

approaches the task by introducing a progressive learn-

ing mechanism. Specifically, DocScanner takes a recur-

rent structure that corrects the document distortion via

iterative and progressive refinements. During training,

at each iteration, DocScanner takes the rectification

results of the previous iteration as input, aggregates

them, and learns to refine the current rectified image to-

ward a distortion-free one. Note that such a refinement

operation can be applied iteratively during inference

without divergence. In this way, the distortions in the

input document images are progressively corrected and

finally converge to a relatively steady status, achieving

an accurate and robust rectification.

Our DocScanner exhibits a novel design, discussed

next. Firstly, our recurrent rectification architecture

maintains a single estimate of the rectified image that

is refined iteratively. This is different from the intu-

itive strategy that a rectified image pyramid is super-

vised to refine the output in a multi-scale way (Za-

mir et al., 2021; Yang et al., 2021), where large degra-

dations/deformations are recovered at low resolution,

while small ones are recovered at high resolution, which

may have difficulty in recovering from early errors. Sec-

ondly, at each iteration, DocScanner aggregates the re-

sults predicted at the previous iteration, including the

features of the original distorted image and the cur-

rent rectified image. Then, a convolution-based gated

recurrent unit takes the aggregated features and the

current hidden state as input, and outputs the refined

rectified image. Thirdly, the recurrent architecture is

lightweight with only 4.1M parameters, which ensures

efficiency under multiple iterations. Fourthly, we pro-

pose a circle-consistency loss as a geometric regular-

ization to further relieve the rectified distortion, which

imposes straight-line constraints on rectified images.

Moreover, we propose a new evaluation metric

for document image rectification. Based on the dense

SIFT-flow (Liu et al., 2011) between ground truth im-

age to rectified one, the typical metric Local Distortion

(LD) (You et al., 2018) computes the average displace-

ment of all matched pixels. We observe that LD focuses

more on the distortion of local areas. Inspired by this,

we propose Line Distortion (Li-D) as a supplementary

metric to further evaluate the global distortion of the

rectified images, by computing the average deformation

of the row and column pixels in rectified images.

Extensive experiments on the Doc3D dataset (Das

et al., 2019) and DocUNet Benchmark dataset (Ma

et al., 2018) demonstrate the effectiveness of our

method as well as its superiority over state-of-the-art

methods. In addition, we validate various design choices

of DocScanner through extensive ablation studies. We

summarize the strengths of DocScanner as follows,

– State-of-the-art performance: DocScanner sets sev-

eral state-of-the-art records on the challenging Do-

cUNet Benchmark dataset (Ma et al., 2018), includ-

ing metrics MultiScale Structural SIMilarity (MS-

SSIM), Local Distortion (LD), our proposed Line

Distortion (Li-D), Edit Distance (ED), and Charac-

ter Error Rate (CER).
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– Superior efficiency : DocScanner processes 1080P

document images at 10.03 FPS on a 2080Ti GPU.

Moreover, the parameter number of DocScanner is

about 1/5 of the best-published method.

– Strong generalization ability : DocScanner exhibits

strong generalization ability, demonstrated by the

robustness experiments on background, viewpoint,

illumination, and document type.

2 Related Work

In this section, we broadly categorize the research on

document image rectification into two different direc-

tions: (a) rectification by 3D shape reconstruction, and

(b) rectification based on deep learning. In the follow-

ing, we discuss them separately.

Rectification by 3D shape reconstruction. Tra-

ditionally, some methods utilize auxiliary equipments

to reconstruct a 3D shape of the deformed document,

followed by flattening the surface to correct the dis-

tortions. Brown and Seales (Brown and Seales, 2001)

acquire the 3D representation of document shape with

a light projector and then flatten this representation

via a mass-spring particle system. Later, they (Brown

et al., 2007) acquire a 3D scan of the document sur-

face with a 3D scanning system, and conformal map-

ping (Lévy et al., 2002) is used to rectify the geometric

distortion by mapping the 3D surface to a plane. Zhang

et al (Zhang et al., 2008) use a laser range scanner and

perform restoration by using a physical modeling tech-

nique. Meng et al (Meng et al., 2014, 2017) introduce

structured beams illuminating upon the deformed doc-

ument page to recover curves of the page surface.

In addition to the methods that rely on the auxil-

iary hardwares, some other methods utilize two or more

multiview images for 3D shape reconstruction. Brown et

al (Brown and Seales, 2004) utilize a calibrated mirror

system to obtain the 3D surface using multiview stereo.

Yamashita et al (Yamashita et al., 2004) detect the

stereo corresponding points between two images based

on the normalization cross correlation method. Tsoi et

al (Tsoi and Brown, 2007) transform the multiple views

into a common coordinate frame based on the document

boundaries to correct the distortions. Koo et al (Koo

et al., 2009) estimate the unfolded surface by the cor-

responding points between two images by SIFT (Lowe,

2004). You et al (You et al., 2018) propose a ridge-aware

3D reconstruction method to rectify a paper sheet from

a few of images. However, both the auxiliary equip-

ments and multiple images are unavailable in common

situations, which limits their applicability.

Moreover, techniques of the third subcategory re-

construct the 3D shape from a single view. They com-

monly assume a parametric model on the document sur-

face, like a cylindrical surface, and fit the model based

on the extraction of specific representations. Among

them, some methods (Wada et al., 1997; Chew Lim

Tan et al., 2006; Courteille et al., 2007; Zhang et al.,

2009) obtain a document shape based on shape from

shading technique. Some algorithms are designed based

on the priori that the textlines are horizontally or ver-

tically aligned in well-rectified images, thus the dis-

torted images can be corrected based on the detection

of textlines. In early work, the detected textlines are

modeled as cubic B-splines by Lavialle et al (Lavialle

et al., 2001; Meng et al., 2011), non-linear curve by Wu

and Agam (Wu and Agam, 2002), and polynomial ap-

proximation by (Mischke and Luther, 2005; Kim et al.,

2015; Kil et al., 2017). Moreover, features about bound-

aries (Brown and Tsoi, 2006; He et al., 2013), char-

acters (Zandifar, 2007), interline spacing and textline

orientation (Koo and Cho, 2010) are extracted to esti-

mate the rectification. Liang et al (Liang et al., 2008)

estimate the 3D document shape from texture flow in-

formation obtained directly from the image. Tian et

al (Tian and Narasimhan, 2011) compute the 3D de-

formation up to a scale factor using SVD. Meng et

al (Meng et al., 2018) estimate the 3D shape model

through weighted majority voting on the vector fields.

Das et al (Das et al., 2019) innovatively model the 3D

shape of a document with a convolutional network and

then regress the warping flow for rectification.

Rectification based on deep learning. Although

the above methods achieve encouraging results, the

strong assumptions on surface geometry, contents, and

illumination limit their applicabilities. DocUNet (Ma

et al., 2018) is the first model to demonstrate the po-

tential of deep learning for document image rectifica-

tion. It predicts a dense forward warping flow with a

stacked U-Net (Ronneberger et al., 2015) to unwarp

the distorted document image. DocProj (Li et al., 2019)

predicts the warping flow of the cropped distorted doc-

ument image patches first, rather than the entire image,

and then stitches them together to generate a fully rec-

tified image. However, the estimation and subsequent

stitching of the warping flow patches heavily increase

the computational cost. AGUN (Liu et al., 2020) de-

velops a pyramid encoder-decoder architecture, which

predicts the forward warping flow at multiple resolu-

tions in a coarse-to-fine fashion. However, directly feed-

ing the distorted images with complex backgrounds to

the network for rectification estimation is difficult, due

to the involvement of extra implicit learning to iden-

tify the foreground document. Based on Fully Convolu-

tional Network (Long et al., 2015), Xie et al (Xie et al.,

2020) perform a foreground/background classification
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Fig. 1: An overview of the proposed DocScanner. It decouples the task into a foreground document localiza-

tion and a geometric distortion rectification. Given the distorted document image ID, the document localization

module first separates the foreground document from the noisy background by predicting a binary mask MID of

the foreground document. Then, the background-excluded image Id is fed into the progressive rectification module,

which progressively corrects the geometric distortion in an iterative manner. It maintains a single estimate of the

warping flow that is refined at each iteration, and output the rectified image by warping the image ID with the

output warping flow fK at the last iteration.

as a post-processing to refine the predicted forward

warping flow on boundary regions of the document. To

learn a powerful representation for the document im-

age, DocTr (Feng et al., 2021) first introduces the self-

attention mechanism (Vaswani et al., 2017) from the

natural language processing tasks to the filed. To im-

prove the running efficiency, DDCP (Xie et al., 2021)

only estimates several pairs of control points to conduct

rectification. PWUNet (Das et al., 2021) concentrates

on the distinct distortion of local regions for improved

global rectification. DocGeoNet (Feng et al., 2022) ex-

tracts global and local geometric representations to im-

prove rectification, by the prediction of 3D shape and

textlines. To extract the structural information of a de-

formed document, FDRNet (Xue et al., 2022) focuses

on high-frequency components in the Fourier space to

improve restoration. Marior (Zhang et al., 2022) con-

siders the rectification of the document images with

large background regions and gradually rectifies them

to a robust state. RDGR (Jiang et al., 2022) first de-

tect textlines and boundaries in a document image, and

then perform the rectification by solving an optimiza-

tion problem with the proposed grid regularization. To

improve the generalization ability of the network, Pa-

perEdge (Ma et al., 2022) involves the real-world doc-

ument images in the training.

Although the field of document image rectification

has witnessed rapid progress in recent years, the recti-

fied results of such advanced methods still remain un-

solved distortions and are unsatisfactory. In this work,

we propose DocScanner, a new deep architecture for

document image rectification, aiming to achieve an ac-

curate and robust distortion rectification.

3 METHODOLOGY

In this section, we present our design of DocScanner

to facilitate the geometric correction of distorted docu-

ment images. As shown in Fig. 1, DocScanner consists

of a document localization module and a progressive

rectification module. Given a distorted document image

ID, the document localization module estimates a fore-

ground mask MID to exclude the background. Then,

the image with only foreground document Id is fed into

the progressive rectification module, which maintains a

single estimate of warping flow and refines it across K

iterations. The final output warping flow fK is used

to rectify the input image ID. Additionally, to further

relieve the distortion of rectified images, we propose

a regularization loss to regularize the training of the

progressive rectification module. In the following, we

elaborate the key components of DocScanner, includ-

ing the document localization module, the progressive

rectification module, and the training strategy.

3.1 Document Localization Module

The goal of the document localization module is to re-

move the noisy background. It makes the subsequent

rectification network focuses on geometric rectification,

without extra learning on localizing the document. Fol-

lowing prior work (Xie et al., 2021; Feng et al., 2021;

Zhang et al., 2022), we formulate the foreground doc-

ument segmentation as a saliency detection problem,

and address it with a nested U-structure network (Qin

et al., 2020). As shown in Fig. 1, given a distorted doc-

ument image ID ∈ RH×W×3, where H and W are the
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Fig. 2: Visualization of the rectification process of a

certain pixel on the rectified image based on the warp-

ing flow. ID and Ik
r are the input distorted image and

output rectified image, respectively.

height and width of the image, we predict a confidence

map of the foreground document. This map is further

binarized with a threshold τ to obtain the binary doc-

ument region mask MID . Then, the background of ID
can be removed by element-wise matrix multiplication

with broadcasting along the channels of ID. It should be

noted that this module can also be replaced with other

alternative segmentation networks. The document lo-

calization module is trained with a binary cross-entropy

loss (De Boer et al., 2005) as follows,

Lseg = −
Np∑
i=1

[yi log(p̂i) + (1− yi) log(1− p̂i)] , (1)

where Np is the number of the pixels of the distorted

image ID, yi ∈ {0, 1} and p̂i ∈ [0, 1] denote the ground-

truth and the predicted confidence, respectively.

3.2 Progressive Rectification Module

Given the background-excluded image, the progressive

rectification module progressively corrects it toward a

distortion-free one. Specifically, we design a compact

recurrent architecture to refine the rectification result

estimated at the previous iteration. Through iterative

refinements, the distortions in the input distorted doc-

ument images are progressively corrected and finally

converge to a relatively steady and accurate status.

As shown in Fig. 1, given the background-excluded

image Id ∈ RH×W×3 obtained by the document lo-

calization module, we estimate the warping flow it-

eratively and get the sequence {f1, · · · ,fK}, where

fk = (fk
u ,f

k
v ) is the predicted warping flow at the kth

iteration, andK is the total iteration number. Note that

the two channel of the warping flow fk ∈ RH×W×2 de-

note the horizontal and the vertical coordinate mapping

(i.e., fk
u and fk

v ), respectively. With fk predicted at the

kth iteration, as illustrated in Fig. 2, the rectified image

Ik
r can be obtained by the warping operation based on

the bilinear sampling as follows,

Ik
r (u0, v0) = ID(fk

u (u0, v0),f
k
v (u0, v0)), (2)
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Fig. 3: Illustration of the warping flow estimation at the

kth iteration. Given the distorted features c0 and pre-

dicted warping flow fk−1, it outputs the current warp-

ing flow fk. W represents the bilinear sampling oper-

ation of warping. “C” and “+” denote concatenation

over channel and element-wise addition, respectively.

“↓” and “↑” denote the bilinear downsampling and the

learnable upsampling module, respectively.

where (u0, v0) is the integer pixel coordinate in recti-

fied image, and (fk
u (u0, v0),f

k
v (u0, v0)) is the predicted

decimal pixel coordinate in distorted image.

For convenience of understanding, we divide the

progressive rectification module into three blocks, in-

cluding (1) distorted feature encoder, (2) rectified fea-

ture generator, and (3) warping flow updater. In the

following, we separately detail the three blocks.

Distorted feature encoder. Given the input image

Id ∈ RH×W×3, we use a convolutional network Eθ to

extract features from distorted image Id. Eθ consists of

6 residual blocks (He et al., 2016) and stride the fea-

ture maps every two blocks, followed by two parallel

convolutional layers. The two parallel layers produce

features c0 ∈ RH
8 ×W

8 ×D and h0 ∈ RH
8 ×W

8 ×D, respec-

tively, where we set channel dimension D = 128. c0
denotes the distorted features, and h0 serves as the ini-

tial hidden state for warping flow updater. Note that

both c0 and h0 need to be calculated only once.

Rectified feature generator. As shown in Fig. 3, we

take the kth iteration as an example for illustration.

Given the distorted features c0 from the distorted fea-

ture encoder and the warping flow fk−1 predicted at

the (k − 1)th iteration, we first downsample fk−1 and

get the warping flow fk−1
m = (fk−1

mu ,fk−1
mv ) at 1/8 res-

olution. Then, we unwarp the feature maps c0 toward

rectified domain using predicted fk−1
m based on bilinear

sampling, and obtain features ck−1 as follows,

ck−1(x, y) = c0(f
k−1
mu (x, y),fk−1

mv (x, y)), (3)

where (x, y) is the integer pixel coordinate in ck−1, and

(fk−1
mu (x, y),fk−1

mv (x, y)) is the predicted decimal pixel
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Table 1: The structure of the distorted feature encoder

and rectified feature generator in DocScanner-B.

Layer Output size Operation

Eθ 256 × 36 × 36

7× 7, 64, stride 2
3× 3, 64, stride 1
3× 3, 64, stride 1
3× 3, 96, stride 1
3× 3, 96, stride 2
3× 3, 128, stride 1
3× 3, 128, stride 2
1× 1, 256, stride 1

Vθ 64 × 36 × 36
7× 7, 128, stride 1
3× 3, 64, stride 1

Qθ 192 × 36 × 36
1× 1, 224, stride 1
3× 3, 192, stride 1

Zθ 128 × 36 × 36 3× 3, 128, stride 1

coordinate in c0. Note that the initial warping flow

f0 ∈ RH×W×2 is initialized as the coordinate map of

the pixels in Id. In addition, the warping operation is

implemented based on bilinear interpolation. Therefore,

we can compute the gradients to the input feature map

c0 and warping flow fk−1
m for backpropagation, accord-

ing to classic STN (Jaderberg et al., 2015), and the

module can be trained in an end-to-end manner. Then

the warped feature map ck−1 is processed by a convo-

lutional module Qθ which consists of two convolutional

layers, and produce features Qθ(ck−1) ∈ RH
8 ×W

8 ×Dq ,

where we set Dq = 192.

Additionally, another convolutional module Vθ that

consists of two convolutional layers is used to extract

features from the predicted warping flow fk−1
m , and

output features Vθ(f
k−1
m ) ∈ RH

8 ×W
8 ×Dv , where we set

Dv = 64. Then, we concatenate Qθ(ck−1) and Vθ(f
k−1
m )

along the channel dimension into a single feature map,

which is fused by a following convolutional layer Zθ.

Finally, we concatenate the output features and the

downsampled warping flow fk−1
m to generate the recti-

fied feature map Fk ∈ RH
8 ×W

8 ×D. It carries the content

and the structural information of the current rectified

image estimated at the previous iteration, which is dif-

ferentiated and processed by the following updater to

estimate a further refinement.

Warping flow updater. As shown in Fig. 3, we con-

catenate distorted features c0 and the rectified fea-

tures Fk along the channel dimension into a single fea-

ture map xk ∈ RH
8 ×W

8 ×2D, which serves as the input

of the recurrent unit at the kth iteration. We use a

convolution-based gated recurrent unit (GRU) as the

recurrent unit as many other tasks (Tokmakov et al.,

2017; Teed and Deng, 2020; Zhou et al., 2021). As

shown in Fig. 4, it is a variant of GRU (Cho et al.,

2014), in which the fully connected layers are replaced

by the convolutional layers. For the kth iteration, it pro-

cesses the input features xk ∈ RH
8 ×W

8 ×2D and the hid-

Sigmoid

Tanh

Element-wise

Multiplication

1-

Conv Conv Conv Conv

C

∆𝒇𝑚
𝑘

𝒉𝑘−1 𝒉𝑘

C

Channel-wise

Concatenation

+

+
Element-wise

Addition

𝒙𝑘

C

𝒛𝑘𝒓𝑘 ෩𝒉𝑘

Fig. 4: Inner structure of the ConvGRU, a modified

version of GRU (Cho et al., 2014).

den state hk−1 ∈ RH
8 ×W

8 ×D, and outputs the hidden

states hk ∈ RH
8 ×W

8 ×D as follows,

zk = σ(Conv3×3([hk−1,xk],Wz)), (4)

rk = σ(Conv3×3([hk−1,xk],Wr)), (5)

h̃k = tanh(Conv3×3([rk ⊙ hk−1,xk],Wh)), (6)

hk = (1− zk)⊙ hk−1 + zk ⊙ h̃k, (7)

where σ and ⊙ represent Sigmoid function and element-

wise multiplication operation, respectively. Followed by

hk is two convolutional layers that produce the residual

displacement ∆fk
m ∈ RH

8 ×W
8 ×2.

To upsample the obtained 1/8 scale ∆fk
m to full res-

olution (H ×W ), we introduce a learnable upsampling

module (Feng et al., 2021). Specifically, we first exploit

two convolutional layers (stride 1) to process the hid-

den state hk ∈ RH
8 ×W

8 ×D, and reshape the output to a
H
8 ×W

8 ×8×8×9 map. Then, we perform softmax on the

last dimension of it and get the weight matrix. Next,

using the obtained weight matrix, we take a weighted

combination over the 3× 3 neighborhood of each pixel

in ∆fk
m. Finally, the obtained H

8 × W
8 × 8× 8× 2 map

is permuted and reshaped to the full resolution residual

displacement map ∆fk ∈ RH×W×2.

After that, ∆fk is used to update the current warp-

ing flow fk as follows,

fk = fk−1 +∆fk. (8)

As shown in Fig. 1, after K iterations, based on Equa-

tion (2), we obtain the rectified image IK
r by warping

the distorted image ID with the final predicted fK .

3.3 Training Loss Function

During the training of the progressive rectification mod-

ule, the loss is calculated over allK iterations as follows,



DocScanner: Robust Document Image Rectification with Progressive Learning 7

L =

K∑
k=1

λK−kL(k), (9)

where λK−k is the weight of the kth iteration which in-

creases exponentially (λ < 1). At the kth iteration, the

loss is defined as the weighted summation of the warp-

ing flow regression loss L(k)
f and the proposed circle-

consistency loss L(k)
line as follows,

L(k) = L(k)
f + αL(k)

line, (10)

where α is a constant weighting factor. L(k)
f is defined

as the L1 distance between the predicted warping flow

fk and its given ground truth fgt as follows,

L(k)
f =

∥∥fgt − fk
∥∥
1
. (11)

The proposed circle-consistency loss L(k)
line works as

a regularizer, which imposes straight-line constraint

along rows and columns in rectified image. We detail

it in the following.

3.3.1 Circle-consistency Loss

Equation (2) shows that during the rectification pro-

cess, the pixel in rectified image Ik
r is filled with the cor-

responding pixel sampled in distorted image ID based

on the predicted warping flow fk. This predicted warp-

ing flow fk is termed as backward warping flow. We fur-

ther introduce forward warping flow g = (gx, gy) from

the dataset, which maps the pixel (x0, y0) in distorted

image ID to pixel (gx(x0, y0), gy(x0, y0)) in rectified im-

age Ik
r as follows,

Ik
r (gx(x0, y0), gy(x0, y0)) = ID(x0, y0), (12)

where (x0, y0) is the integer pixel coordinate in the

distorted image ID, while (gx(x0, y0), gy(x0, y0)) is the

corresponding decimal pixel coordinate in the rectified

image Ik
r .

We propose circle-consistency loss, based on the

circle-consistency introduced by the backward warping

and the forward warping operations. It consists of two

terms, along the row and column direction respectively.

As shown in Fig. 5, we take the row distortion term

as an example. Specifically, we first map the pixels of

ith row (i.e., lines) in ground truth document image

to ID, based on the predicted backward warping flow

fk. Secondly, we map these pixels back to the ground

truth document image again, using the ground truth

forward warping flow g. After the above two steps, we

get a curved line linec, which shall be the straight line

lines when the backward warping flow in the first step is

Backward Warping

using 

Predicted 𝒇𝑘

Forward Warping

using 

Ground Truth 𝒈

Consistency Loss

Computation

𝑰𝐷 𝑰𝐺𝑇

𝑰𝐷

𝑰𝐷 𝑰𝐺𝑇

𝑰𝐺𝑇

𝑙𝑖𝑛𝑒𝑠

𝑙𝑖𝑛𝑒𝑐

𝑳𝑟𝑜𝑤(𝑖)

Fig. 5: Illustration of the circle-consistency loss. After

warping a line pixels lines using the predicted backward

warping flow fk and ground truth forward warping flow

g, the output line linec should be consistent with itself

lines under perfect prediction. Based on this observa-

tion, the circle-consistency loss is defined by computing

the distortion of linec.

perfectly estimated. Hence, we define the ith row circle-

consistency loss Lrow(i) as the deviation of row coordi-

nate of the estimated curved line linec as follows,

Lrow(i) =
1

W

W∑
k=1

∥x(i, k)− xi∥22, (13)

where xi denotes the averaged row coordinate of the

curved line linec, and x(i, k) denotes the row coordinate

of the kth pixel of linec. Lrow(i) measures the distortion

of the ith row which should be zero in case of perfect

rectification.

Similarly, we can calculate the column circle-

consistency term Lcol(j) for the jth column. Then, the

total circle-consistency loss Lline is calculated over all

rows and columns as follows,

Lline =
1

W

W∑
i=1

Lrow(i) +
1

H

H∑
j=1

Lcol(j), (14)

where (H,W ) is the shape of the predicted warping flow

fk.
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4 Experiments

4.1 Datasets

We train our DocScanner on the Doc3D dataset (Das

et al., 2019) and evaluate it on the DocUNet Benchmark

dataset (Ma et al., 2018). In the following, we elaborate

the two datasets respectively.

Doc3D. Doc3D dataset (Das et al., 2019) is the largest

dataset to date for document image rectification. It

is created by the real document data and rendering

software, i.e., Blender1. The dataset consists of 100k

distorted document images. For each distorted image,

there are corresponding ground truth 3D coordinate

map, albedo map, normals map, depth map, forward

warping flow map, and backward warping flow map.

DocUNet Benchmark. The challenging DocUNet

Benchmark dataset (Ma et al., 2018) is a widely-used

dataset for document image rectification. It comprises

130 photos of real paper documents captured by mobile

cameras. The documents include various types such as

receipts, letters, fliers, magazines, academic papers, and

books, etc. Besides, their distortion and background are

various to cover different levels of difficulty.

Notably, we observe that the 127th and 128th dis-

torted document images are rotated by 180 degrees,

which do not match the ground truth documents. This

inconsistency is ignored by existing methods (Ma et al.,

2018; Das et al., 2019; Liu et al., 2020; Xie et al., 2020;

Das et al., 2021; Feng et al., 2021; Xie et al., 2021;

Zhang et al., 2022; Jiang et al., 2022; Ma et al., 2022).

In our experiments, we use the corrected dataset.

4.2 Evaluation Metrics

We use three evaluation schemes to quantitatively eval-

uate the performance of DocScanner in terms of (a)

rectification distortion, (b) Optical Character Recogni-

tion (OCR) accuracy, and (c) image similarity. Firstly,

for rectification distortion, we use Local Distortion

(LD) (You et al., 2018) as recommended in (Ma et al.,

2018; Das et al., 2019; Liu et al., 2020; Xie et al., 2020;

Das et al., 2021; Feng et al., 2021; Xie et al., 2021;

Zhang et al., 2022; Jiang et al., 2022; Ma et al., 2022).

Moreover, we propose a new metric, namely Line Dis-

tortion (Li-D), to further evaluate the global distor-

tion of the rectified document images. Secondly, for

OCR accuracy, we choose Edit Distance (ED) (Leven-

shtein, 1966) and Character Error Rate (CER) (Morris

et al., 2004) to evaluate the utility of our method on

text recognition, following (Ma et al., 2018; Das et al.,

1 https://www.blender.org/

2019, 2021; Feng et al., 2021; Zhang et al., 2022; Jiang

et al., 2022; Ma et al., 2022). Thirdly, for image sim-

ilarity, we use Multi-Scale Structural Similarity (MS-

SSIM) (Wang et al., 2003) as previous works (Ma et al.,

2018; Das et al., 2019; Liu et al., 2020; Das et al., 2020;

Xie et al., 2020; Das et al., 2021; Feng et al., 2021; Xie

et al., 2021; Zhang et al., 2022; Jiang et al., 2022; Ma

et al., 2022) suggest.

Local Distortion. Local distortion (LD) (You et al.,

2018) first registers the rectified image with the ground

truth one using a dense SIFT-flow (Liu et al., 2011)

(∆x, ∆y), where ∆x and ∆y denote the horizontal

and vertical displacement map of the matched pixels

from the ground truth image to the rectified one, re-

spectively. Then, LD is calculated as the mean value of

the L2 distance among all matched pixels, which mea-

sures the average local deformation of the rectified im-

age. Note that, for a fair comparison, all the rectified

images and the ground truth images are resized to a

598,400-pixel area, as suggested in (Ma et al., 2018;

Das et al., 2019; Liu et al., 2020; Xie et al., 2020; Das

et al., 2021; Feng et al., 2021; Xie et al., 2021; Zhang

et al., 2022; Jiang et al., 2022; Ma et al., 2022).

Line Distortion. We propose Line Distortion (Li-D)

as a supplementary metric to further evaluate the global

distortion of the rectified images. Specifically, the dense

SIFT-flow (Liu et al., 2011) (∆x, ∆y) from the ground

truth scanned image to the rectified one is first com-

puted. Then, we calculate the standard deviation of all

column vectors in the ∆x and all row vectors in the

∆y, which measure the deformation of a certain rec-

tified row and column pixels, respectively. Finally, we

take the mean of all the standard deviation values to

obtain the overall Line Distortion (Li-D) value.

Compared to the typical metric Local Distortion

(LD) (You et al., 2018), the proposed Line Distortion

(Li-D) computes the average deformation of the row

and column pixels. In another word, Li-D focuses more

on the global distortions. The less distortion of the rec-

tified image, the lower the value. Note that if there is

only global misalignment (i.e. scaling and translation)

between two images, the Li-D should be 0 but such

global misalignments are not considered for this task.

ED and CER. Edit Distance (ED) (Levenshtein,

1966) quantifies how dissimilar two strings are to one

another. It is defined based on the minimum number

of operations required to transform one string into the

reference one, which can be efficiently calculated us-

ing the dynamic programming algorithm. Specifically,

the involved operations include deletions (d), insertions

(i), and substitutions (s). Then, Character Error Rate
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Table 2: Quantitative comparisons of the existing learning-based rectification methods in terms of image similarity,

distortion metrics, OCR performance, and running efficiency on the DocUNet Benchmark dataset (Ma et al., 2018).

“↑” indicates the higher the better and “↓” means the opposite.

Methods Venue MS-SSIM ↑LD ↓Li-D ↓ ED ↓ CER ↓ FPS ↑Para.(M)

Distorted - 0.2459 20.51 5.66 2111.56/1552.22 0.5352/0.5089 - -
DocUNet (Ma et al., 2018) CVPR’18 0.4103 14.19 3.19 1933.66/1259.83 0.4632/0.3966 58.6
AGUN (Liu et al., 2020) PR’18 - - - - - - -
DocProj (Li et al., 2019) TOG’19 0.2946 18.01 5.00 1712.48/1165.93 0.4267/0.3818 - 47.8
FCN-based (Xie et al., 2020) DAS’20 0.4477 7.84 2.04 1792.60/1031.40 0.4213/0.3156 1.49 23.6
DewarpNet (Das et al., 2019) ICCV’19 0.4735 8.39 2.31 885.90/525.45 0.2373/0.2102 8.17 86.9
PWUNet (Das et al., 2021) ICCV’21 0.4915 8.64 2.34 1069.28/743.32 0.2677/0.2623 - -
DocTr (Feng et al., 2021) MM’21 0.5105 7.76 2.11 724.84/464.83 0.1832/0.1746 7.74 26.9
DDCP (Xie et al., 2021) ICDAR’21 0.4729 8.99 2.20 1442.84/745.35 0.3633/0.2626 14.09 13.3
DocGeoNet (Feng et al., 2022) ECCV’22 0.5040 7.71 2.22 713.94/379.00 0.1821/0.1509 8.57 24.8
Marior (Zhang et al., 2022) MM’22 0.4780 7.44 2.03 776.22/593.80 0.1928/0.2136 - -
RDGR (Jiang et al., 2022) CVPR’22 0.4968 8.51 2.12 729.52/420.25 0.1717/0.1559 - -
PaperEdge (Ma et al., 2022) SIGGRAPH’22 0.4724 7.99 1.83 777.76/375.60 0.2014/0.1541 13.95 36.6
DocScanner-T - 0.5123 7.92 2.04 809.46/501.82 0.2068/0.1823 10.81 2.6
DocScanner-B - 0.5134 7.62 1.88 671.48/434.11 0.1789/0.1652 10.03 5.2
DocScanner-L - 0.5178 7.45 1.86 632.34/390.43 0.1648/0.1486 9.52 8.5

(CER) can be computed as follows,

CER = (d+ i+ s)/Nc, (15)

where Nc is the character number of the reference

string. It represents the percentage of characters in the

reference text that was incorrectly recognized in the

distorted image. The lower the CER value (with 0 be-

ing a perfect score), the better the performance of the

rectification method. We use Tesseract (v5.0.1) (Smith,

2007) as the OCR engine to recognize the text string

of the rectified image and the ground truth image, as

recommended in previous works (Ma et al., 2018; Das

et al., 2019; Liu et al., 2020; Das et al., 2020; Xie et al.,

2020; Das et al., 2021; Feng et al., 2021; Xie et al., 2021;

Zhang et al., 2022; Jiang et al., 2022; Ma et al., 2022).

MS-SSIM. The Structural SIMilarity (SSIM) (Zhou

Wang et al., 2004) measures the similarity of mean

value and variance within each image patch be-

tween two images. Considering that the perceivabil-

ity of image details depends on the sampling density

of the image, Multi-Scale Structural Similarity (MS-

SSIM) (Wang et al., 2003) builds a Gaussian pyramid

for the rectified image and the corresponding ground

truth image, respectively. Then, MS-SSIM is calculated

as the weighted summation of SSIM (Zhou Wang et al.,

2004) across multiple scales. Specifically, all the recti-

fied and ground truth flatbed-scanned images are first

resized to a 598,400-pixel area, as recommended in Do-

cUNet (Ma et al., 2018). Then, we build a 5-level-

pyramid for MS-SSIM and the weight for each level

is set as 0.0448, 0.2856, 0.3001, 0.2363, 0.1333, which

is inherited from the original implementation of MS-

SSIM (Wang et al., 2003).

4.3 Training Details

The whole framework of DocScanner is implemented in

Pytorch (Paszke et al., 2017). We train the document

localization module and progressive rectification mod-

ule independently on the Doc3D dataset (Das et al.,

2019). We detail their training in the following.

Document localization module. During training, to

generalize well to real data with complex background

environments, we randomly replace the background of

the distorted image with the texture images from De-

scribable Texture Dataset (DTD) (Cimpoi et al., 2014).

We use Adam optimizer (Kingma and Ba, 2014) with

a batch size of 32. The initial learning rate is set as

1×10−4, and reduced by a factor of 0.1 after 30 epochs.

After 45 epochs, the training loss converges. The train-

ing is conducted on two NVIDIA RTX 2080 Ti GPUs.

The threshold τ for binarizing the confidence map in

Sec. 3.1 is empirically set as 0.5.

Progressive rectification module. During training,

we remove the background of distorted images using

the ground truth masks of the foreground document re-

gions. In other words, the documents are within a clean

background. To generalize well to real data with com-

plex illumination conditions, we then add a jitter in the

HSV color space to magnify illumination and document

color variations. We use AdamW optimizer (Loshchilov

and Hutter, 2017) with a batch size of 12. The to-

tal training iteration is set as 560k, and the learning

rate reaches the maximum 1×10−4 after 27k iterations

for learning rate warm-up. We set the hyperparameters

K = 12, λ = 0.85 (in Equation (9)), α = 0.5 (in Equa-

tion (10)). Experiments are all performed on a single

NVIDIA GTX 1080 Ti GPU.
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Fig. 6: Comparisons of the distortion distribution curve

of DocScanner-L with the state-of-the-art methods (Ma

et al., 2022; Jiang et al., 2022; Feng et al., 2022;

Zhang et al., 2022). The x-coordinate denotes the dis-

tortion extent, and the y-coordinate shows their fre-

quency distribution among the total DocUNet Bench-

mark dataset (Ma et al., 2018).

4.4 Experimental Results

We evaluate the performance of DocScanner on the Do-

cUNet Benchmark dataset (Ma et al., 2018) by quan-

titative and qualitative evaluation. Table 2 shows the

comparisons of our method with the existing learning-

based methods on image similarity, distortion metrics,

OCR accuracy, and inference efficiency. Note that for

OCR accuracy evaluation, following DewarpNet (Das

et al., 2019) and DocTr (Feng et al., 2021), we se-

lect 50 and 60 images from the DocUNet Benchmark

dataset (Ma et al., 2018) respectively, where the text

makes up the majority of content. This is because if

the text is rare in an image, the character number Nc

(numerator) in Equation (15) is a small number, lead-

ing to a large variance for CER.

For DocUNet (Ma et al., 2018), DewarpNet (Das

et al., 2019), FCN-based (Xie et al., 2020), DocTr (Feng

et al., 2021), PWUNet (Das et al., 2021), Mar-

ior (Zhang et al., 2022), RDGR (Jiang et al., 2022),

DocGeoNet (Feng et al., 2022), and PaperEdge (Ma

et al., 2022), we obtain the results based on the rectified

document images of DocUNet Benchmark dataset (Ma

et al., 2018) from the authors or the public results. For

AGUN (Liu et al., 2020), there is no public official code.

Due to the two problematic samples in the DocUNet

Benchmark dataset (Ma et al., 2018), we can not ob-

tain the performance. For DocProj (Li et al., 2019) and

DDCP (Xie et al., 2021), we report the results based on

the official code and their public pre-trained models.

Comparison with state-of-the-art methods. As

shown in Table 2, DocScanner sets several state-of-

the-art records on DocUNet Benchmark dataset (Ma

et al., 2018). Here we build three varieties of our Doc-

Scanner with different model sizes (i.e., DocScanner-

T, DocScanner-B, and DocScanner-L). Note that dif-

Fig. 7: Comparisons of the distortion distribution curve

of the three varieties of DocScanner, i.e., DocScanner-

T, DocScanner-B, and DocScanner-L. The x-coordinate

denotes the distortion extent, and the y-coordinate

shows their frequency distribution among the total Do-

cUNet Benchmark dataset (Ma et al., 2018).

ferent from other methods, DocProj (Li et al., 2019)

is a patch-based method that predicts the distortion

flow on document patches rather than the entire image.

Therefore, the rectified boundaries are still distorted

due to the uncropped distorted images in the DocUNet

Benchmark dataset (Ma et al., 2018), leading to a lim-

ited performance on distortion metrics. Compared with

the classic DewarpNet (Das et al., 2019), DocScanner-B

achieves a relative improvement on MS-SSIM by 8.43%,

Li-D by 18.61%, and CER by 24.61%/21.41%, respec-

tively, with only 1/16 parameters. Moreover, compared

with DocTr (Feng et al., 2021) based on the pow-

erful transformer (Vaswani et al., 2017), our larger

DocScanner-L shows a relative improvement on Li-D by

11.85% and CER by 10.04%/14.89%, with 1/3 parame-

ters. Compared with the recent state-of-the-art method

Marior (Zhang et al., 2022) and PaperEdge (Ma et al.,

2022), DocScanner-L yields a sizeable improvement on

metric MS-SSIM and LD. Such lower distortion and su-

perior OCR performance demonstrate that DocScanner

can effectively restore both the structure and content

of distorted document images.

As shown in Fig. 6, we compare the distortion

frequency distribution curves of DocScanner with the

state-of-the-art methods (Ma et al., 2022; Jiang et al.,

2022; Feng et al., 2022; Zhang et al., 2022). Specifically,

for the Local Distortion distribution curve (left), the

x-coordinate denotes the L2 distance of the matched

pixels between the rectified image and the GT image,

while the y-coordinate denotes their frequency distribu-

tion among the total DocUNet Benchmark dataset (Ma

et al., 2018). We can see that, for DocScanner the pix-

els with small deformations take up the majority of the

rectified images and the pixels with large deformations

have a smaller proportion, compared to other meth-

ods. In another word, the rectified images of DocScan-

ner have smaller local deformations. In addition, for



DocScanner: Robust Document Image Rectification with Progressive Learning 11

Distorted DocUNet DocProj FCN-based DewarpNet PWUNet DocGeoNetDocTr DDCP Marior RDGR DocScannerPaperEdge

Fig. 8: Qualitative comparisons with existing learning-based methods, including DocUNet (Ma et al., 2018),

DocProj (Li et al., 2019), FCN-based (Xie et al., 2020), DewarpNet (Das et al., 2019), PWUNet (Das et al.,

2021), DocTr (Feng et al., 2021), DDCP (Xie et al., 2021), DocGeoNet (Feng et al., 2022), Marior (Zhang et al.,

2022), RDGR (Jiang et al., 2022), and PaperEdge (Ma et al., 2022). The rectified images of DocScanner show less

distortions than the other rectification methods. Zoom in for the best view.

the Line Distortion distribution curve (right), the x-

coordinate denotes the standard deviation of the recti-

fied row and column pixels. Similarly, the y-coordinate

denotes their frequency distribution among the total

DocUNet Benchmark dataset (Ma et al., 2018). The ob-

tained curve (right) presents similar distributions to the

Local Distortion distribution curve (left), which demon-

strates that the rectified images of DocScanner have

smaller global deformations. Such results show the su-

perior rectification performance of DocScanner over the

state-of-the-art methods.

In Fig. 7, we compare the distortion frequency dis-

tribution curves of DocScanner-T, DocScanner-B, and

DocScanner-L. As we can see, DocScanner-L reveals

smaller local and global deformations, compared with

DocScanner-T and DocScanner-B.

To better demonstrate the effectiveness of our pro-

posed DocScanner, we further conduct qualitative com-

parisons with existing methods (Ma et al., 2018; Li

et al., 2019; Das et al., 2019; Xie et al., 2020; Das et al.,

2021; Feng et al., 2021; Xie et al., 2021; Feng et al.,

2022; Zhang et al., 2022; Jiang et al., 2022; Ma et al.,

2022). Concretely, as shown in Fig. 8, we first compare

Table 3: Running time of processing a 1080P image and

parameter count of the document localization module

and the progressive rectification module.

Module of DocScanner-B Time (s) Parameters (M)
document localization 0.014 1.13
progressive rectification 0.085 4.10

total 0.099 5.23

the rectified images. The results reveal that the rectified

images of our DocScanner show less distortions than the

other rectification methods. Second, as shown in Fig. 9,

we randomly crop some local patches to compare the

local rectification details. We can see that the rectified

textlines of DocScanner are much straighter than other

rectification methods. Such outstanding visual perfor-

mances agree with the above quantitative results.

Efficiency comparison. As shown in Table 2, we also

conduct efficiency comparisons, on the running time of

processing a 1080P resolution image and the network

parameter numbers. The evaluation is performed on a

single RTX 2080Ti GPU. Note that we only compare

the methods with the released codes and the computed

FPS does not involve the time spent on reading images.
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FCN-based
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Distorted
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DocTr
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Fig. 9: Qualitative comparisons of the local rectified textlines with existing learning-based methods, including

DocUNet (Ma et al., 2018), DocProj (Li et al., 2019), FCN-based (Xie et al., 2020), DewarpNet (Das et al., 2019),

PWUNet (Das et al., 2021), DocTr (Feng et al., 2021), DDCP (Xie et al., 2021), DocGeoNet (Feng et al., 2022),

Marior (Zhang et al., 2022), RDGR (Jiang et al., 2022), and PaperEdge (Ma et al., 2022). The rectified horizontal

textlines of the proposed DocScanner are much straighter than the other rectification methods.

Fig. 10: Robustness illustration of DocScanner on background changes. The two rows show input distorted and

corresponding rectified images, respectively. We capture the images of deformed documents, within cluttered

backgrounds under outdoor or indoor scenes during the day or night.

The previous method DewarpNet (Das et al., 2019),

DocTr (Feng et al., 2021), PaperEdge (Ma et al., 2022),

and our DocScanner all directly predict backward warp-

ing flow for rectification. They show much higher ef-

ficiency than methods (Ma et al., 2018; Xie et al.,

2020; Liu et al., 2020) that take the forward warping

flow as the ground truth. This is because for the lat-

ter methods, during inference, the predicted forward

warping flow needs to be converted to the backward

warping flow first based on scattered data interpola-

tion (Amidror, 2002), which is time-consuming. Be-

sides, DocProj (Li et al., 2019) first estimates the warp-

ing flow of the image patches and then stitches them

based on multilabel graph cuts (Boykov et al., 2001),
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Fig. 11: Robustness illustration of DocScanner on viewpoint (left) and illumination (right) changes. The two rows

show input distorted and corresponding rectified images. The input images are captured from different viewpoints

(left) and under different illumination conditions (right).

Fig. 12: Robustness illustration of DocScanner on document type changes. The two rows show input distorted

and corresponding rectified images. The types of captured deformed document include a full view of books,

advertisement, music sheet, receipt, hand-written letter, ticket, and envelop, from left to right.

Distorted HuaweiXiaomi CamScanner DocScanner

Fig. 13: Qualitative comparisons with the prevalent

techniques in smartphones. The two rows show input

distorted and corresponding rectified images. Different

from the prevalent techniques in smartphones, our Doc-

Scanner can handle any irregular deformations.

which heavily increases the computational cost. Com-

pared with them, DocScanner shows superior efficiency,

though it involves iterations. This could be ascribed

that DocScanner applies a compact recurrent rectifica-

tion module. DDCP (Xie et al., 2021) regresses a set

of control points and PaperEdge (Ma et al., 2022) esti-

mates a sparse backward warping flow, showing higher

efficiency. Moreover, since DocScanner ties the weights

across iterations, it is the most lightweight method to

date. As shown in Table 2, the parameter number of

DocScanner-T only has 2.6M parameters, which is ap-

proximately 3% of DewarpNet (Das et al., 2019) and 7%

of PaperEdge (Ma et al., 2022), and it achieves 10.81

FPS. As shown in Table 3, we further show the running

efficiency and parameter count of the document local-

ization module and progressive rectification module in

DocScanner-B, respectively.

Comparison with the prevalent techniques. The

prevalent algorithms built in smartphones commonly

have a restriction that the document must be a regular

quadrilateral. Such techniques first detect the corner

points of the document to localize the document region

and then perform a perspective transformation to rec-

tify the image. Hence, these methods can not handle the

situations when the captured document has any irregu-

lar deformations. As shown in Fig. 13, we compare our

DocScanner with some prevalent techniques, including
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Table 4: Ablation experiments of DocScanner-B in terms of image similarity, distortion metrics, OCR performance,

and running efficiency on the DocUNet Benchmark dataset (Ma et al., 2018). “↑” indicates the higher the better

and “↓” means the opposite.

Models MS-SSIM ↑ LD ↓ Li-D ↓ ED ↓ CER ↓ FPS ↑ Para. (M)
DocScanner-B 0.5134 7.62 1.88 671.48/434.11 0.1788/0.1652 8.62 5.2 (1.1+4.1)
Document Localization → None 0.4738 9.22 2.23 668.26/436.50 0.1734/0.1668 10.09 4.1
Upsampling: Learnable → Bilinear 0.5072 8.03 1.87 674.01/452.15 0.1763/0.1679 8.69 4.8 (1.1+3.7)
ConvGRU → ConvLSTM 0.5131 7.92 1.86 684.26/448.01 0.1792/0.1647 8.53 5.7 (1.1+4.6)
Shared Weights → Unshared Weights 0.5087 7.52 1.92 680.62/459.52 0.1801/0.1693 - 38.7 (1.1+37.6)
Circle-consistency Loss → None 0.5117 7.99 1.99 663.76/445.40 0.1787/0.1674 - 5.2 (1.1+4.1)

Table 5: Ablation experiments of the rectified feature generator of DocScanner-B in terms of image similarity,

distortion metrics, OCR performance, and running efficiency on the DocUNet Benchmark dataset (Ma et al.,

2018). “↑” indicates the higher the better and “↓” means the opposite.

Components of xk MS-SSIM ↑ LD ↓ Li-D ↓ ED ↓ CER ↓ FPS ↑ Para. (M)
c0 Qθ(ck−1) Vθ(fk−1

m ) fk−1
m

! 0.4736 9.09 2.70 1492.76/1006.88 0.3856/0.3687 9.17 3.9 (1.1+2.8)
! ! 0.4762 9.03 2.65 1503.82/922.05 0.3856/0.3645 9.13 4.7 (1.1+3.6)
! ! ! 0.4968 8.01 1.97 697.59/461.92 0.1741/0.1668 8.70 4.4 (1.1+3.3)
! ! ! ! 0.5134 7.62 1.88 671.48/434.11 0.1788/0.1652 8.62 5.2 (1.1+4.1)

the CamScanner Application2, the built-in document

rectification system of Huawei Mate 30 Pro, and Xi-

aomi 11. We can see that DocScanner is capable of cor-

recting various irregular deformations. This is because

the predicted warping flow of our DocScanner defines a

non-parametric transformation, thus being able to rep-

resent a wide range of distortions.

Robustness of DocScanner. To verify the robust-

ness of DocScanner, we evaluate the rectification per-

formance in four aspects, including the change of back-

ground, viewpoint, illumination, and document types.

Firstly, as shown in Fig. 10, our DocScanner can

perform strongly when the captured documents are un-

der various cluttered backgrounds. Note that these dis-

torted images are real document photos captured by

smartphones under outdoor or indoor scenes during the

day or night. Secondly, we validate the rectification per-

formance when the input distorted images are captured

from different viewpoints and under different illumina-

tion conditions, respectively. The results are shown in

Fig. 11. It can be seen that DocScanner shows high ro-

bustness in spite of the various viewpoints and illumi-

nation conditions. Thirdly, as shown in Fig. 12, we fur-

ther evaluate the ability of DocScanner to process dis-

torted images with different document types. The types

of captured deformed documents involve a full view of

book, advertisement, music sheet, receipt, hand-written

letter, ticket, and envelope. Note that such document

types are blind in the training dataset but they are

well-rectified by our DocScanner. These results reveal

the strong generalization ability of our method.

2 https://www.camscanner.com/

Distorted w/o DocLoc w/o DocLocw/ DocLoc w/ DocLocDistorted

Fig. 14: Examples of the results from DocScanner-B

to illustrate the impact of the document localization

module (abbreviated as “DocLoc” in this figure). The

two failure cases (left) and two successful cases (right)

demonstrate that document localization is auxiliary

and indispensable for building a robust document im-

age rectification system.

4.5 Ablation Studies

We conduct ablation studies to verify the effectiveness

of each component in DocScanner, including the docu-

ment localization module, the progressive rectification

module, and the circle-consistency loss. Several intrigu-

ing properties are observed.

Document localization module. Removing the

noisy backgrounds or localizing the foreground docu-

ment is an effective technique for improving the per-

formance, and is widely adopted in the state-of-the-art

methods (Xie et al., 2020; Feng et al., 2022; Zhang et al.,

2022; Jiang et al., 2022; Ma et al., 2022) or the above

built-in software in smartphones. To test its impact on

our DocScanner, we train a baseline network without

the document localization module, where a distorted
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Distorted Background 

Removed 

Iteration 1 Output

Rectified

Iteration 5 Iteration 9 Iteration 11Iteration 3 Iteration 7

Fig. 15: Visualization of the rectification process of DocScanner-B. We show the rectified document images at the

selected odd iterations. It can be seen that DocScanner progressively corrects the document distortion and finally

converges to a stable rectification result. It is better viewed in color.

Table 6: Performance of DocScanner-B on selected iterations on the DocUNet Benchmark dataset (Ma et al., 2018)

during inference. DocScanner does not diverge even when iteration is up to 200. Settings used in our final model

are underlined. “↑” indicates the higher the better and “↓” means the opposite.

iters distorted 1 2 3 4 5 6 9 12 18 24 36 100 200
LD ↓ 20.51 8.82 8.51 8.02 7.99 7.93 7.96 7.74 7.62 7.55 7.57 7.56 7.60 7.62
Li-D ↓ 5.66 3.15 2.60 2.35 2.21 2.09 2.07 1.92 1.88 1.83 1.84 1.86 1.87 1.87

document image with a cluttered background is directly

fed to the progressive rectification module. As shown

in Table 4, with the document localization module, the

performance of DocScanner increases 17.35% (from 9.22

to 7.62) and 15.70% (from 2.23 to 1.88) on metric LD

and Li-D, respectively. These gains can be ascribed that

in DocScanner, the distorted image feature c0 is taken

as the input of the warping flow updater at every it-

eration, as shown in Fig. 1 and Fig. 3. If we do not

localize the foreground documents before conducting

the progressive rectification, the background noise will

be injected and accumulated along with the iterations,

which will disturb the rectification process.

Interestingly, as shown in Table 4, the improvement

in OCR performance is not remarkable. To provide a

more specific view of the impact of the document lo-

calization, we showcase four examples in Fig. 14. As

illustrated in the left two examples, without document

localization, the rectified image fails to cover the com-

plete document region (upper example), and the bound-

aries are corrupted with background (lower example).

In contrast, the right two examples show excellent rec-

tification quality, despite no document localization. We

take a deeper analysis by counting the number of failed

cases belonging to these failure situations, and find that

they only account for 7.69% of the total test samples in

the DocUNet Benchmark dataset (Ma et al., 2018). We

observe that the images for OCR evaluation do not in-

Fig. 16: Performance of DocScanner-B on metric Lo-
cal Distortion (left) and Line Distortion (right) from

the 1th to 25th iteration on the DocUNet Benchmark

dataset (Ma et al., 2018) during inference. The lower

the values of LD and Li-D, the better the performance.

For our DocScanner, the superior performance is ob-

tained after convergence.

volve such cases, which has less influence on the OCR

evaluation. These quantitative and qualitative results

verify that taking the whole distorted image as the in-

put involves an extra burden to localize the foreground

document region besides geometric rectification. More

importantly, for our DocScanner, document localization

is an auxiliary but indispensable part for building a ro-

bust document image rectification system.

Progressive rectification module. In the following,

we first validate the major components in the progres-

sive rectification module, including the rectified feature

generator, the learnable upsampling module for warp-
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Fig. 17: Example results of the limitation discussion. The two rows show input distorted and corresponding rectified

images of DocScanner-B, respectively. When the input distorted images have only incomplete or no document

boundaries, the rectified images of DocScanner remain partial distortion.

ing flow, and the warping flow updater. Then, we verify

the effectiveness of our progressive learning strategy.

We first validate the compositions of the feature xk

that is fed into the warping flow updater at each it-

eration. Specifically, as shown in Table 5, we train a

baseline model that directly takes the distorted fea-

ture c0 as the input xk to the warping flow updater.

That is, the baseline model does not have the recti-

fied feature generator. Then, we integrate the warped

feature (Qθ(ck−1)) and the flow feature (Vθ(f
k−1
m ) and

fk−1
m ), respectively. The performances obtain a 8.8%

and 33.3% gain on metric Line Distortion, respectively.

The improvement of former ablation could be ascribed

that the warped feature encodes the structure and con-

tent information of the predicted rectified image, which

is differentiated and processed to estimate the further

refinement. For the latter ablation, the flow feature rep-

resents the pixel displacement information, which can

facilitate the learning of the residual regression for re-

finement. At last, DocScanner fuses the warped feature

and the flow feature to generate the input feature xt.

The performance gains are further enhanced due to the

strong feature representations.

At each iteration, the warping flow updater outputs

the displacement residual ∆fk
m at 1/8 resolution. Next,

we compare the bilinear upsampling to our learnable

upsampling module for ∆fk
m. As shown in Table 4, the

performances are slightly better using the learnable up-

sampling module. The reason is that, the coarse bilinear

upsampling operation for ∆fk
m likely can not recover

the small deformations of the distorted document.

The default updater unit in DocScanner is Con-

vGRU. We replace the ConvGRU with ConvLSTM, a

modified version of standard LSTM (Hochreiter and

Schmidhuber, 1997). In Table 4, while ConvLSTM

shows comparable performance, ConvGRU produces

higher efficiency on inference time and parameter num-

ber. By default, we tie the weights across the total K it-

erations. Then, we test a version of our approach where

each update operator learns a separate set of weights.

Performances are slightly better when the weights are

untied while the parameters significantly increase.

To provide a more specific view of the rectification

process, we provide the results of the selected iteration

numbers on the metric LD and Li-D in Table 6. The

metric LD and Li-D capture the local and global distor-

tion of the rectified document images, respectively. We

can see that the main rectification lies in the top 1∼5 it-

erations, while the later iterations fine-tune the perfor-

mance. Besides, the performance does not diverge even

when the iteration number K is increased to 200, which

illustrates the robustness of our method. As shown in

Fig. 15, we further visualize the rectification process

and show the corresponding rectified document images

at odd iterations. It can be seen that, during the rec-

tification process, the curved textlines in the input dis-

torted document images are progressively corrected and

finally converge to a relatively steady position, leading

to a stable rectification performance.

As shown in Fig. 16, we further show the perfor-

mance on the DocUNet Benchmark dataset (Ma et al.,

2018) from the 1th to 25th iteration during the inference

process on the metric LD (left) and Li-D (right), respec-

tively. For DocScanner, the superior performance is ob-

tained after convergence. Note that our DocScanner-B

outperforms DewarpNet (Das et al., 2019) after about

4 iterations, and DocGeoNet (Feng et al., 2022) after

about 8 iterations. In our final model, we set the iter-

ation number K=12 to stride a balance between the

accuracy and the running efficiency. These quantitative

and qualitative results demonstrate the effectiveness

and the robustness of the progressive learning strategy.

Circle-consistency loss. With the circle-consistency

loss, as shown in Table 4, DocScanner (full model) ob-
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tains an important gain on all metrics on the DocUNet

Benchmark dataset (Ma et al., 2018). The results il-

lustrate the effectiveness of the straight-line constraint

along the rows and columns, relieving the global distor-

tions of the rectified document images.

4.6 Limitation Discussion

In this section, we discuss the limitation of our method.

As shown in Fig. 17, when the input distorted images

have only incomplete or no document boundaries, the

rectified images remain partial distortion.

Interestingly, we can see that the proposed Doc-

Scanner still shows a certain rectification capacity for

such images, though our training dataset does not con-

tain document images with incomplete boundaries. In

fact, for a distorted document image, its rectification

cue mainly comes from three aspects, including docu-

ment boundaries, textlines, and its illumination distri-

bution. When document boundaries are incomplete in

an image, the rectification network still can extract the

geometric information from the other aspects.

Such distorted images are also common in real life

and will be explored in our future work.

5 Conclusion

In this work, we present DocScanner, an effective cas-

caded system for document image rectification. It lo-

calizes the document first and then progressively cor-

rects the document distortion in an iterative manner.

With the progressive and iterative correction, DocScan-

ner achieves superior rectification performance and set

several state-of-the-art scores on the challenging bench-

mark dataset. Extensive experiments are conducted to

validate the merits of our method. Moreover, we pro-

pose a new distortion metric for the field that evalu-

ate the global distortion of the rectified document im-

ages. In the future, we will explore the rectification of

document images with incomplete boundaries. Besides,

considering that DocScanner focuses on the geometric

distortion problem of the document images, we intend

to further concentrate on the illumination distortion to

enhance the visual quality and improve the OCR accu-

racy. We will seek the solution in further investigations.
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